Displaying 901 – 920 of 1236

Showing per page

Tables de réseaux entiers unimodulaires construits comme k -voisins de Z n

Roland Bacher (1997)

Journal de théorie des nombres de Bordeaux

Cet article énumère les réseaux entiers unimodulaires de dimension 24 , vus comme k -voisins de Z n . La première partie contient les informations nécessaires pour lire et pour travailler avec les tables. Elle ne contient aucune preuve. La deuxième partie est formée de tables qui contiennent les données numériques pour les réseaux unimodulaires entiers indécomposable de dimension 24 . Un appendice esquisse les preuves des énoncés.

Ternary quadratic forms ax² + by² + cz² representing all positive integers 8k + 4

Kenneth S. Williams (2014)

Acta Arithmetica

Under the assumption that the ternary form x² + 2y² + 5z² + xz represents all odd positive integers, we prove that a ternary quadratic form ax² + by² + cz² (a,b,c ∈ ℕ) represents all positive integers n ≡ 4(mod 8) if and only if it represents the eight integers 4,12,20,28,52,60,140 and 308.

Ternary quadratic forms with rational zeros

John Friedlander, Henryk Iwaniec (2010)

Journal de Théorie des Nombres de Bordeaux

We consider the Legendre quadratic forms ϕ a b ( x , y , z ) = a x 2 + b y 2 - z 2 and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers 1 a A , 1 b B , for which the form ϕ a b has a non-trivial rational zero. Under certain mild conditions on the integers a , b , we are able to find the asymptotic formula for the number of such forms.

Currently displaying 901 – 920 of 1236