Displaying 101 – 120 of 1236

Showing per page

Binary quadratic forms and Eichler orders

Montserrat Alsina (2005)

Journal de Théorie des Nombres de Bordeaux

For any Eichler order 𝒪 ( D , N ) of level N in an indefinite quaternion algebra of discriminant D there is a Fuchsian group Γ ( D , N ) SL ( 2 , ) and a Shimura curve X ( D , N ) . We associate to 𝒪 ( D , N ) a set ( 𝒪 ( D , N ) ) of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to Γ ( D , N ) , for primitive forms contained in ( 𝒪 ( D , N ) ) . In particular, the classification theory of primitive integral binary quadratic forms by SL ( 2 , ) is recovered. Explicit fundamental domains for Γ ( D , N ) allow the characterization...

Birational geometry of quadrics

Burt Totaro (2009)

Bulletin de la Société Mathématique de France

We construct new birational maps between quadrics over a field. The maps apply to several types of quadratic forms, including Pfister neighbors, neighbors of multiples of a Pfister form, and half-neighbors. One application is to determine which quadrics over a field are ruled (that is, birational to the projective line times some variety) in a larger range of dimensions. We describe ruledness completely for quadratic forms of odd dimension at most 17, even dimension at most 10, or dimension 14....

Calcul du nombre de classes d'un corps quadratique imaginaire ou réel, d'après Shanks, Williams, McCurley, A. K. Lenstra et Schnorr

Henri Cohen (1989)

Journal de théorie des nombres de Bordeaux

Dans cette note nous décrivons différentes méthodes utilisées en pratique pour calculer le nombre de classes d'un corps quadratique imaginaire ou réel ainsi que pour calculer le régulateur d'un corps quadratique réel. En particulier nous décrivons l'infrastructure de Shanks ainsi que la méthode sous-exponentielle de McCurley.

Cayley orders

Arjeh M. Cohen, Gabriele Nebe, Wilhelm Plesken (1996)

Compositio Mathematica

Currently displaying 101 – 120 of 1236