Displaying 141 – 160 of 1236

Showing per page

Congruences for q [ p / 8 ] ( m o d p )

Zhi-Hong Sun (2013)

Acta Arithmetica

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine q [ p / 8 ] ( m o d p ) in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.

Cubic moments of Fourier coefficients and pairs of diagonal quartic forms

Jörg Brüdern, Trevor D. Wooley (2015)

Journal of the European Mathematical Society

We establish the non-singular Hasse principle for pairs of diagonal quartic equations in 22 or more variables. Our methods involve the estimation of a certain entangled two-dimensional 21st moment of quartic smooth Weyl sums via a novel cubic moment of Fourier coefficients.

Currently displaying 141 – 160 of 1236