Displaying 61 – 80 of 161

Showing per page

Mean values related to the Dedekind zeta-function

Hengcai Tang, Youjun Wang (2024)

Czechoslovak Mathematical Journal

Let K / be a nonnormal cubic extension which is given by an irreducible polynomial g ( x ) = x 3 + a x 2 + b x + c . Denote by ζ K ( s ) the Dedekind zeta-function of the field K and a K ( n ) the number of integral ideals in K with norm n . In this note, by the higher integral mean values and subconvexity bound of automorphic L -functions, the second and third moment of a K ( n ) is considered, i.e., n x a K 2 ( n ) = x P 1 ( log x ) + O ( x 5 / 7 + ϵ ) , n x a K 3 ( n ) = x P 4 ( log x ) + O ( X 321 / 356 + ϵ ) , where P 1 ( t ) , P 4 ( t ) are polynomials of degree 1, 4, respectively, ϵ > 0 is an arbitrarily small number.

Modular parametrizations of certain elliptic curves

Matija Kazalicki, Koji Tasaka (2014)

Acta Arithmetica

Kaneko and Sakai (2013) recently observed that certain elliptic curves whose associated newforms (by the modularity theorem) are given by the eta-quotients can be characterized by a particular differential equation involving modular forms and Ramanujan-Serre differential operator. In this paper, we study certain properties of the modular parametrization associated to the elliptic curves over ℚ, and as a consequence we generalize and explain some of their findings.

Modularity of an odd icosahedral representation

Arnaud Jehanne, Michael Müller (2000)

Journal de théorie des nombres de Bordeaux

In this paper, we prove that the representation ρ from G in GL 2 ( ) with image A 5 in PGL 2 ( A 5 ) corresponding to the example 16 in [B-K] is modular. This representation has conductor 5203 and determinant χ - 43 ; its modularity was not yet proved, since this representation does not satisfy the hypothesis of the theorems of [B-D-SB-T] and [Tay2].

On arbitrary products of eigenforms

Arvind Kumar, Jaban Meher (2016)

Acta Arithmetica

We characterize all the cases in which products of arbitrary numbers of nearly holomorphic eigenforms and products of arbitrary numbers of quasimodular eigenforms for the full modular group SL₂(ℤ) are again eigenforms.

On certain G L ( 6 ) form and its Rankin-Selberg convolution

Amrinder Kaur, Ayyadurai Sankaranarayanan (2024)

Czechoslovak Mathematical Journal

We consider L G ( s ) to be the L -function attached to a particular automorphic form G on G L ( 6 ) . We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg L -function L G × G ( s ) . As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of L G × G ( s ) .

Currently displaying 61 – 80 of 161