Displaying 101 – 120 of 161

Showing per page

On the higher power moments of cusp form coefficients over sums of two squares

Guodong Hua (2022)

Czechoslovak Mathematical Journal

Let f be a normalized primitive holomorphic cusp form of even integral weight for the full modular group Γ = SL ( 2 , ) . Denote by λ f ( n ) the n th normalized Fourier coefficient of f . We are interested in the average behaviour of the sum a 2 + b 2 x λ f j ( a 2 + b 2 ) for x 1 , where a , b and j 9 is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power L -functions and Rankin-Selberg L -functions.

Opérateurs de Hecke pour Γ 0 ( N ) et fractions continues

Loïc Merel (1991)

Annales de l'institut Fourier

Nous rappelons que Manin décrit l’homologie singulière relative aux pointes de la courbe modulaire X 0 ( N ) comme un quotient du groupe Z ( P 1 ( Z / N Z ) ) . En s’appuyant sur des techniques de fractions continues, nous donnons une expression indépendante de N d’un relèvement de l’action des opérateurs de Hecke de H 1 ( X 0 ( N ) , p t e s , Z ) sur Z ( P 1 ( Z / N Z ) ) .

Real zeros of holomorphic Hecke cusp forms

Amit Ghosh, Peter Sarnak (2012)

Journal of the European Mathematical Society

This note is concerned with the zeros of holomorphic Hecke cusp forms of large weight on the modular surface. The zeros of such forms are symmetric about three geodesic segments and we call those zeros that lie on these segments, real. Our main results give estimates for the number of real zeros as the weight goes to infinity.

Real zeros of holomorphic Hecke cusp forms and sieving short intervals

Kaisa Matomäki (2016)

Journal of the European Mathematical Society

We study so-called real zeros of holomorphic Hecke cusp forms, that is, zeros on three geodesic segments on which the cusp form (or a multiple of it) takes real values. Ghosh and Sarnak, who were the first to study this problem, showed the existence of many such zeros if many short intervals contain numbers whose prime factors all belong to a certain subset of the primes.We prove new results concerning this sieving problem which leads to improved lower bounds for the number of real zeros.

Currently displaying 101 – 120 of 161