Displaying 61 – 80 of 120

Showing per page

On special values of theta functions of genus two

Ehud De Shalit, Eyal Z. Goren (1997)

Annales de l'institut Fourier

We study a certain finitely generated multiplicative subgroup of the Hilbert class field of a quartic CM field. It consists of special values of certain theta functions of genus 2 and is analogous to the group of Siegel units. Questions of integrality of these specials values are related to the arithmetic of the Siegel moduli space.

On the spinor zeta functions problem: higher power moments of the Riesz mean

Haiyan Wang (2013)

Acta Arithmetica

Let F be a Siegel cusp form of integral weight k on the Siegel modular group Sp₂(ℤ) of genus 2. The coefficients of the spinor zeta function Z F ( s ) are denoted by cₙ. Let D ρ ( x ; Z F ) be the Riesz mean of cₙ. Kohnen and Wang obtained the truncated Voronoï-type formula for D ρ ( x ; Z F ) under the Ramanujan-Petersson conjecture. In this paper, we study the higher power moments of D ρ ( x ; Z F ) , and then derive an asymptotic formula for the hth (h=3,4,5) power moments of D ( x ; Z F ) by using Ivić’s large value arguments and other techniques.

p -adic measures attached to Siegel modular forms

Siegfried Böcherer, Claus-Günther Schmidt (2000)

Annales de l'institut Fourier

We study the critical values of the complex standard- L -function attached to a holomorphic Siegel modular form and of the twists of the L -function by Dirichlet characters. Our main object is for a fixed rational prime number p to interpolate p -adically the essentially algebraic critical L -values as the Dirichlet character varies thus providing a systematic control of denominators of critical values by generalized Kummer congruences. In order to organize this information we prove the existence of...

Currently displaying 61 – 80 of 120