On Poincaré series on Spm.
We study a certain finitely generated multiplicative subgroup of the Hilbert class field of a quartic CM field. It consists of special values of certain theta functions of genus 2 and is analogous to the group of Siegel units. Questions of integrality of these specials values are related to the arithmetic of the Siegel moduli space.
Let F be a Siegel cusp form of integral weight k on the Siegel modular group Sp₂(ℤ) of genus 2. The coefficients of the spinor zeta function are denoted by cₙ. Let be the Riesz mean of cₙ. Kohnen and Wang obtained the truncated Voronoï-type formula for under the Ramanujan-Petersson conjecture. In this paper, we study the higher power moments of , and then derive an asymptotic formula for the hth (h=3,4,5) power moments of by using Ivić’s large value arguments and other techniques.
We study the critical values of the complex standard--function attached to a holomorphic Siegel modular form and of the twists of the -function by Dirichlet characters. Our main object is for a fixed rational prime number to interpolate -adically the essentially algebraic critical -values as the Dirichlet character varies thus providing a systematic control of denominators of critical values by generalized Kummer congruences. In order to organize this information we prove the existence of...