Mahler's measure and special values of -functions.
Let and be an Eisenstein series and a cusp form, respectively, of the same weight and of the same level , both eigenfunctions of the Hecke operators, and both normalized so that . The main result we prove is that when and are congruent mod a prime (which we take in this paper to be a prime of lying over a rational prime ), the algebraic parts of the special values and satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions,where the...
Special values of certain functions of the type are studied where is a motive over a totally real field with coefficients in another field , andis an Euler product running through maximal ideals of the maximal order of andbeing a polynomial with coefficients in . Using the Newton and the Hodge polygons of one formulate a conjectural criterium for the existence of a -adic analytic continuation of the special values. This conjecture is verified in a number of cases related to...