On a short spectral sum involving inner products of a holomorphic cusp form and Maass forms
We give a simple proof that critical values of any Artin -function attached to a representation with character are stable under twisting by a totally even character , up to the -th power of the Gauss sum related to and an element in the field generated by the values of and over . This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.
Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.