Page 1 Next

Displaying 1 – 20 of 24

Showing per page

Shintani and Shimura lifts of cusp forms on certain arithmetic groups and their applications

SoYoung Choi, Chang Heon Kim (2017)

Open Mathematics

For an odd and squarefree level N, Kohnen proved that there is a canonically defined subspace [...] S κ + 1 2 n e w ( N ) ⊂ S κ + 1 2 ( N ) , and S κ + 1 2 n e w ( N ) and S 2 k n e w ( N ) S κ + 1 2 n e w ( N ) S κ + 1 2 ( N ) , and S κ + 1 2 n e w ( N ) and S 2 k n e w ( N ) are isomorphic as modules over the Hecke algebra. Later he gave a formula for the product [...] a g ( m ) a g ( n ) ¯ a g ( m ) a g ( n ) ¯ of two arbitrary Fourier coefficients of a Hecke eigenform g of halfintegral weight and of level 4N in terms of certain cycle integrals of the corresponding form f of integral weight. To this...

Sommes de Dedekind elliptiques et formes de Jacobi

Abdelmejid Bayad (2001)

Annales de l’institut Fourier

À partir des formes de Jacobi D L ( z , ϕ ) , on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division,...

Special values of multiple gamma functions

William Duke, Özlem Imamoḡlu (2006)

Journal de Théorie des Nombres de Bordeaux

We give a Chowla-Selberg type formula that connects a generalization of the eta-function to GL ( n ) with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.

Special values of symmetric power L -functions and Hecke eigenvalues

Emmanuel Royer, Jie Wu (2007)

Journal de Théorie des Nombres de Bordeaux

We compute the moments of L -functions of symmetric powers of modular forms at the edge of the critical strip, twisted by the central value of the L -functions of modular forms. We show that, in the case of even powers, it is equivalent to twist by the value at the edge of the critical strip of the symmetric square L -functions. We deduce information on the size of symmetric power L -functions at the edge of the critical strip in subfamilies. In a second part, we study the distribution of small and...

Currently displaying 1 – 20 of 24

Page 1 Next