The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 12 of 12

Showing per page

Non-abelian p -adic L -functions and Eisenstein series of unitary groups – The CM method

Thanasis Bouganis (2014)

Annales de l’institut Fourier

In this work we prove various cases of the so-called “torsion congruences” between abelian p -adic L -functions that are related to automorphic representations of definite unitary groups. These congruences play a central role in the non-commutative Iwasawa theory as it became clear in the works of Kakde, Ritter and Weiss on the non-abelian Main Conjecture for the Tate motive. We tackle these congruences for a general definite unitary group of n variables and we obtain more explicit results in the...

Nonanalytic automorphic integrals on the Hecke groups

Paul C. Pasles (1999)

Acta Arithmetica

1. Introduction. Since its genesis over a century ago in work of Jacobi, Riemann, Poincar ́e and Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a branch of analytic number theory into an industry all its own. Natural extensions of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions...

Non-vanishing of class group L -functions at the central point

Valentin Blomer (2004)

Annales de l’institut Fourier

Let K = ( - D ) be an imaginary quadratic field, and denote by h its class number. It is shown that there is an absolute constant c > 0 such that for sufficiently large D at least c · h p D ( 1 - p - 1 ) of the h distinct L -functions L K ( s , χ ) do not vanish at the central point s = 1 / 2 .

Currently displaying 1 – 12 of 12

Page 1