Several-variable -adic families of Siegel-Hilbert cusp eigensystems and their Galois representations
Recently, Baily has established new foundation for complex multiplication in the context of Hilbert modular functions; see [1]-[4]. However, in his treatment there is a restriction on the class of CM-points treated. Namely, the order of complex multiplications associated to the point must be the maximal order in its quotient field. The purpose of this paper is two-fold: (1) to remove the restriction just mentioned; (2) to recover a result of Tate on the conjugates of CM-points by arbitrary Galois...
Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...