Galois representations of octahedral type and 2-coverings of elliptic curves.
La géométrie d’Arakelov étudie les fibrés vectoriels sur une variété algébrique définie sur les entiers, munis d’une métrique hermitienne lisse sur le fibré holomorphe associé (sur la variété analytique des points complexes de ). Un théorème de “Riemann-Roch arithmétique” calcule le covolume du réseau euclidien des sections globales d’un tel fibré. Dans cette formule, le genre de Todd comporte un terme complémentaire, défini par une série formelle dont les coefficients font intervenir les valeurs...
We prove non-trivial lower bounds for the growth of ranks of Selmer groups of Hilbert modular forms over ring class fields and over certain Kummer extensions, by establishing first a suitable parity result.
This paper concerns the arithmetic of certain -adic families of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-theoretic aspects of the three items in the title of this paper. In particular, we examine several conjectures, three of which assert the non-triviality of an Euler system, a -adic regulator, and the derivative of a -adic -function. We investigate sufficient conditions for the first conjecture to hold and show that, under additional assumptions, the first...
Under suitable hypotheses, we verify that the global root number of a motivic L-function is inductive (invariant under induction).
We show a -parity result in a -extension of number fields () for the twist : , where is an elliptic curve over , and are respectively the quadratic character and an irreductible representation of degree of , and is the -Selmer group. The main novelty is that we use a congruence result between -factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the -parity conjecture (using...
La conjecture de Birch et Swinnerton-Dyer prédit que l’ordre du zéro en de la fonction d’une courbe elliptique définie sur est égal au rang du groupe de ses points rationnels. On sait démontrer cette conjecture si ou , mais on n’a aucun résultat reliant et si . Nous expliquerons comment Kato démontre que la fonction -adique attachée à a, en , un...