Displaying 41 – 60 of 1274

Showing per page

A Note on squares in arithmetic progressions, II

Enrico Bombieri, Umberto Zannier (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that the number of squares in an arithmetic progression of length N is at most c 1 N 3 / 5 log N c 2 , for certain absolute positive constants c 1 , c 2 . This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent 2 3 in place of our 3 5 . The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus 5 as in [1].

A note on the ramification of torsion points lying on curves of genus at least two

Damian Rössler (2010)

Journal de Théorie des Nombres de Bordeaux

Let C be a curve of genus g 2 defined over the fraction field K of a complete discrete valuation ring R with algebraically closed residue field. Suppose that char ( K ) = 0 and that the characteristic p of the residue field is not 2 . Suppose that the Jacobian Jac ( C ) has semi-stable reduction over R . Embed C in Jac ( C ) using a K -rational point. We show that the coordinates of the torsion points lying on C lie in the unique tamely ramified quadratic extension of the field generated over K by the coordinates of the p -torsion...

A note on the torsion of the Jacobians of superelliptic curves y q = x p + a

Tomasz Jędrzejak (2016)

Banach Center Publications

This article is a short version of the paper published in J. Number Theory 145 (2014) but we add new results and a brief discussion about the Torsion Conjecture. Consider the family of superelliptic curves (over ℚ) C q , p , a : y q = x p + a , and its Jacobians J q , p , a , where 2 < q < p are primes. We give the full (resp. partial) characterization of the torsion part of J 3 , 5 , a ( ) (resp. J q , p , a ( ) ). The main tools are computations of the zeta function of C 3 , 5 , a (resp. C q , p , a ) over l for primes l ≡ 1,2,4,8,11 (mod 15) (resp. for primes l ≡ -1 (mod qp))...

A note on trilinear forms for reducible representations and Beilinson's conjectures

Michael Harris, Anthony Scholl (2001)

Journal of the European Mathematical Society

We extend Prasad’s results on the existence of trilinear forms on representations of G L 2 of a local field, by permitting one or more of the representations to be reducible principal series, with infinite-dimensional irreducible quotient. We apply this in a global setting to compute (unconditionally) the dimensions of the subspaces of motivic cohomology of the product of two modular curves constructed by Beilinson.

À propos du théorème de Belyi

Jean-Marc Couveignes (1996)

Journal de théorie des nombres de Bordeaux

Le théorème de Belyi affirme que sur toute courbe algébrique C lisse projective et géométriquement connexe, définie sur ¯ , il existe une fonction f non ramifiée en dehors de 0 , 1 , . Nous montrons que cette fonction peut être choisie sans automorphismes, c’est-à-dire telle que pour tout automorphisme non trivial a de C , on ait f 𝔞 f . Nous en déduisons que si 𝕂 est une extension finie de , toute 𝕂 -classe d’isomorphisme de courbes algébriques lisses projectives géométriquement connexes peut être caractérisée...

A quantitative primitive divisor result for points on elliptic curves

Patrick Ingram (2009)

Journal de Théorie des Nombres de Bordeaux

Let E / K be an elliptic curve defined over a number field, and let P E ( K ) be a point of infinite order. It is natural to ask how many integers n 1 fail to occur as the order of P modulo a prime of K . For K = , E a quadratic twist of y 2 = x 3 - x , and P E ( ) as above, we show that there is at most one such n 3 .

A remark on certain simultaneous divisibility sequences

Stefan Barańczuk, Piotr Rzonsowski (2014)

Colloquium Mathematicae

We investigate possible orders of reductions of a point in the Mordell-Weil groups of certain abelian varieties and in direct products of the multiplicative group of a number field. We express the result obtained in terms of divisibility sequences.

A remark on Tate's algorithm and Kodaira types

Tim Dokchitser, Vladimir Dokchitser (2013)

Acta Arithmetica

We remark that Tate’s algorithm to determine the minimal model of an elliptic curve can be stated in a way that characterises Kodaira types from the minimum of v ( a i ) / i . As an application, we deduce the behaviour of Kodaira types in tame extensions of local fields.

Currently displaying 41 – 60 of 1274