Previous Page 3

Displaying 41 – 45 of 45

Showing per page

Isogeny orbits in a family of abelian varieties

Qian Lin, Ming-Xi Wang (2015)

Acta Arithmetica

We prove that if a curve of a nonisotrivial family of abelian varieties over a curve contains infinitely many isogeny orbits of a finitely generated subgroup of a simple abelian variety, then it is either torsion or contained in a fiber. This result fits into the context of the Zilber-Pink conjecture. Moreover, by using the polyhedral reduction theory we give a new proof of a result of Bertrand.

Iwasawa theory for elliptic curves over imaginary quadratic fields

Massimo Bertolini (2001)

Journal de théorie des nombres de Bordeaux

Let E be an elliptic curve over , let K be an imaginary quadratic field, and let K be a p -extension of K . Given a set Σ of primes of K , containing the primes above p , and the primes of bad reduction for E , write K Σ for the maximal algebraic extension of K which is unramified outside Σ . This paper is devoted to the study of the structure of the cohomology groups H i ( K Σ / K , E p ) for i = 1 , 2 , and of the p -primary Selmer group Sel p ( E / K ) , viewed as discrete modules over the Iwasawa algebra of K / K .

Currently displaying 41 – 45 of 45

Previous Page 3