Displaying 21 – 40 of 45

Showing per page

Integral identities and constructions of approximations to zeta-values

Yuri V. Nesterenko (2003)

Journal de théorie des nombres de Bordeaux

Some general construction of linear forms with rational coefficients in values of Riemann zeta-function at integer points is presented. These linear forms are expressed in terms of complex integrals of Barnes type that allows to estimate them. Some identity connecting these integrals and multiple integrals on the real unit cube is proved.

Integral points on the elliptic curve y 2 = x 3 - 4 p 2 x

Hai Yang, Ruiqin Fu (2019)

Czechoslovak Mathematical Journal

Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E : y 2 = x 3 - 4 p 2 x . Further, let N ( p ) denote the number of pairs of integral points ( x , ± y ) on E with y > 0 . We prove that if p 17 , then N ( p ) 4 or 1 depending on whether p 1 ( mod 8 ) or p - 1 ( mod 8 ) .

Intégralité des coefficients de Taylor de racines d’applications miroir

Éric Delaygue (2012)

Journal de Théorie des Nombres de Bordeaux

Nous démontrons l’intégralité des coefficients de Taylor de racines de séries de la forme q ( z ) : = z exp ( G ( z ) / F ( z ) ) , où F ( z ) et G ( z ) + log ( z ) F ( z ) sont des solutions particulières de certaines équations différentielles hypergéométriques généralisées. Cela nous permet de démontrer une conjecture de Zhou énoncée dans « Integrality properties of variations of Mahler measures » [arXiv :1006.2428v1 math.AG]. La preuve de ces résultats est une adaptation des techniques utilisées dans notre article « Critère pour l’intégralité des coefficients de...

Intersecting a plane with algebraic subgroups of multiplicative groups

Enrico Bombieri, David Masser, Umberto Zannier (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Consider an arbitrary algebraic curve defined over the field of all algebraic numbers and sitting in a multiplicative commutative algebraic group. In an earlier article from 1999 bearing almost the same title, we studied the intersection of the curve and the union of all algebraic subgroups of some fixed codimension. With codimension one the resulting set has bounded height properties, and with codimension two it has finiteness properties. The main aim of the present work is to make a start on such...

Intersection de courbes et de sous-groupes et problèmes de minoration de hauteur dans les variétés abéliennes C.M.

Nicolas Ratazzi (2008)

Annales de l’institut Fourier

Nous prouvons un cas particulier de la conjecture suivante e Zilber-Pink, conjecture généralisant celle de Manin-Mumford  : soit X une courbe incluse dans une variété abélienne A sur ¯ , qui n’est pas incluse dans une sous-variété de torsion  ; l’intersection de X avec la réunion de tous les sous-groupes de codimension au moins 2 est finie. Nous démontrons ici le cas où A est une puissance d’une variété abélienne C.M. simple. La preuve reprend la stratégie de Rémond (suivant Bombieri-Masser-Zannier)...

Invariance of the parity conjecture for p -Selmer groups of elliptic curves in a D 2 p n -extension

Thomas de La Rochefoucauld (2011)

Bulletin de la Société Mathématique de France

We show a p -parity result in a D 2 p n -extension of number fields L / K ( p 5 ) for the twist 1 η τ : W ( E / K , 1 η τ ) = ( - 1 ) 1 η τ , X p ( E / L ) , where E is an elliptic curve over K , η and τ are respectively the quadratic character and an irreductible representation of degree 2 of Gal ( L / K ) = D 2 p n , and X p ( E / L ) is the p -Selmer group. The main novelty is that we use a congruence result between ε 0 -factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the p -parity conjecture (using...

Invariants and coinvariants of semilocal units modulo elliptic units

Stéphane Viguié (2012)

Journal de Théorie des Nombres de Bordeaux

Let p be a prime number, and let k be an imaginary quadratic number field in which p decomposes into two primes 𝔭 and 𝔭 ¯ . Let k be the unique p -extension of k which is unramified outside of 𝔭 , and let K be a finite extension of k , abelian over k . Let 𝒰 / 𝒞 be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of 𝒰 / 𝒞 are finite. Our approach uses distributions and the p -adic L -function, as defined in [5].

Involutory elliptic curves over 𝔽 q ( T )

Andreas Schweizer (1998)

Journal de théorie des nombres de Bordeaux

For n 𝔽 q [ T ] let G be a subgroup of the Atkin-Lehner involutions of the Drinfeld modular curve X 0 ( 𝔫 ) . We determine all 𝔫 and G for which the quotient curve G X 0 ( 𝔫 ) is rational or elliptic.

Irrationalité de valeurs de zêta

Stéphane Fischler (2002/2003)

Séminaire Bourbaki

Les valeurs aux entiers pairs (strictement positifs) de la fonction ζ de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de π . En revanche, on sait très peu de choses sur la nature arithmétique des ζ ( 2 k + 1 ) , pour k 1 entier. Apéry a démontré en 1978 que ζ ( 3 ) est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de ζ ( 2 k + 1 ) sont irrationnels, mais sans pouvoir en exhiber aucun autre que ζ ( 3 ) . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...

Currently displaying 21 – 40 of 45