Displaying 701 – 720 of 1274

Showing per page

On generalized Fermat equations of signature (p,p,3)

Karolina Krawciów (2011)

Colloquium Mathematicae

This paper focuses on the Diophantine equation x + p α y = M z ³ , with fixed α, p, and M. We prove that, under certain conditions on M, this equation has no non-trivial integer solutions if n ( M , p α ) , where ( M , p α ) is an effective constant. This generalizes Theorem 1.4 of the paper by Bennett, Vatsal and Yazdani [Compos. Math. 140 (2004), 1399-1416].

On integral similitude matrices

J. Brzeziński, T. Weibull (2009)

Colloquium Mathematicae

We study integral similitude 3 × 3-matrices and those positive integers which occur as products of their row elements, when matrices are symmetric with the same numbers in each row. It turns out that integers for which nontrivial matrices of this type exist define elliptic curves of nonzero rank and are closely related to generalized cubic Fermat equations.

On invariants of elliptic curves on average

Amir Akbary, Adam Tyler Felix (2015)

Acta Arithmetica

We prove several results regarding some invariants of elliptic curves on average over the family of all elliptic curves inside a box of sides A and B. As an example, let E be an elliptic curve defined over ℚ and p be a prime of good reduction for E. Let e E ( p ) be the exponent of the group of rational points of the reduction modulo p of E over the finite field p . Let be the family of elliptic curves E a , b : y 2 = x 3 + a x + b , where |a| ≤ A and |b| ≤ B. We prove that, for any c > 1 and k∈ ℕ, 1 / | | E p x e E k ( p ) = C k l i ( x k + 1 ) + O ( ( x k + 1 ) / ( l o g x ) c ) as x → ∞, as long as A , B > e x p ( c 1 ( l o g x ) 1 / 2 ) and A B > x ( l o g x ) 4 + 2 c ,...

On Jannsen's conjecture for Hecke characters of imaginary quadratic fields.

Francesc Bars (2007)

Publicacions Matemàtiques

We present a collection of results on a conjecture of Jannsen about the p-adic realizations associated to Hecke characters over an imaginary quadratic field K of class number 1.The conjecture is easy to check for Galois groups purely of local type (Section 1). In Section 2 we define the p-adic realizations associated to Hecke characters over K. We prove the conjecture under a geometric regularity condition for the imaginary quadratic field K at p, which is related to the property that a global Galois...

On non-basic Rapoport-Zink spaces

Elena Mantovan (2008)

Annales scientifiques de l'École Normale Supérieure

In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their l -adic...

On octahedral extensions of and quadratic -curves

Julio Fernández (2003)

Journal de théorie des nombres de Bordeaux

We give a necessary condition for a surjective representation Gal ( ¯ / ) PGL 2 ( 𝔽 3 ) to arise from the 3 -torsion of a -curve. We pay a special attention to the case of quadratic -curves.

Currently displaying 701 – 720 of 1274