Displaying 741 – 760 of 1274

Showing per page

On the arithmetic of the hyperelliptic curve y 2 = x n + a

Kevser Aktaş, Hasan Şenay (2016)

Czechoslovak Mathematical Journal

We study the arithmetic properties of hyperelliptic curves given by the affine equation y 2 = x n + a by exploiting the structure of the automorphism groups. We show that these curves satisfy Lang’s conjecture about the covering radius (for some special covering maps).

On the average value of the canonical height in higher dimensional families of elliptic curves

Wei Pin Wong (2014)

Acta Arithmetica

Given an elliptic curve E over a function field K = ℚ(T₁,...,Tₙ), we study the behavior of the canonical height h ̂ E ω of the specialized elliptic curve E ω with respect to the height of ω ∈ ℚⁿ. We prove that there exists a uniform nonzero lower bound for the average of the quotient ( h ̂ E ω ( P ω ) ) / h ( ω ) over all nontorsion P ∈ E(K).

On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields

Matteo Longo (2006)

Annales de l’institut Fourier

Let E / F be a modular elliptic curve defined over a totally real number field F and let φ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of E over suitable quadratic imaginary extensions K / F . In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when [ F : ] is even and φ not new at any prime.

On the classification of 3-dimensional non-associative division algebras over p -adic fields

Abdulaziz Deajim, David Grant (2011)

Journal de Théorie des Nombres de Bordeaux

Let p be a prime and K a p -adic field (a finite extension of the field of p -adic numbers p ). We employ the main results in [12] and the arithmetic of elliptic curves over K to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over K to the classification of ternary cubic forms H over K (up to equivalence) with no non-trivial zeros over K . We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian...

On the conductor formula of Bloch

Kazuya Kato, Takeshi Saito (2004)

Publications Mathématiques de l'IHÉS

In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.

Currently displaying 741 – 760 of 1274