Displaying 61 – 80 of 95

Showing per page

Correspondance

A. Desboves (1879)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Correspondances de Hecke, action de Galois et la conjecture d’André–Oort

Rutger Noot (2004/2005)

Séminaire Bourbaki

Soient M une variété de Shimura, Z M fermée et irréductible et S Z ( ) un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, Z est une sous-variété de type Hodge. Par exemple, si M est un espace de modules de variétés abéliennes, S est un ensemble de points correspondant à des variétés de type CM et Z doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev montrent certains...

Counting elliptic curves of bounded Faltings height

Ruthi Hortsch (2016)

Acta Arithmetica

We give an asymptotic formula for the number of elliptic curves over ℚ with bounded Faltings height. Silverman (1986) showed that the Faltings height for elliptic curves over number fields can be expressed in terms of modular functions and the minimal discriminant of the elliptic curve. We use this to recast the problem as one of counting lattice points in a particular region in ℝ².

Counting points on elliptic curves over finite fields

René Schoof (1995)

Journal de théorie des nombres de Bordeaux

We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large ; it is based on Shanks's baby-step-giant-step strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic polynomial...

Currently displaying 61 – 80 of 95