Displaying 841 – 860 of 1274

Showing per page

Ordinary reduction of K3 surfaces

Fedor Bogomolov, Yuri Zarhin (2009)

Open Mathematics

Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.

p -adic Differential Operators on Automorphic Forms on Unitary Groups

Ellen E. Eischen (2012)

Annales de l’institut Fourier

The goal of this paper is to study certain p -adic differential operators on automorphic forms on U ( n , n ) . These operators are a generalization to the higher-dimensional, vector-valued situation of the p -adic differential operators constructed for Hilbert modular forms by N. Katz. They are a generalization to the p -adic case of the C -differential operators first studied by H. Maass and later studied extensively by M. Harris and G. Shimura. The operators should be useful in the construction of certain p -adic...

Parity in Bloch’s conductor formula in even dimension

Takeshi Saito (2004)

Journal de Théorie des Nombres de Bordeaux

For a variety over a local field, Bloch proposed a conjectural formula for the alternating sum of Artin conductor of -adic cohomology. We prove that the formula is valid modulo 2 if the variety has even dimension.

Perfect powers expressible as sums of two fifth or seventh powers

Sander R. Dahmen, Samir Siksek (2014)

Acta Arithmetica

We show that the generalized Fermat equations with signatures (5,5,7), (5,5,19), and (7,7,5) (and unit coefficients) have no non-trivial primitive integer solutions. Assuming GRH, we also prove the non-existence of non-trivial primitive integer solutions for the signatures (5,5,11), (5,5,13), and (7,7,11). The main ingredients for obtaining our results are descent techniques, the method of Chabauty-Coleman, and the modular approach to Diophantine equations.

Périodicité (mod q ) des suites elliptiques et points S -entiers sur les courbes elliptiques

Mohamed Ayad (1993)

Annales de l'institut Fourier

Soit E une courbe elliptique sur par un modèle de Weierstrass généralisé : y 2 + A 1 x y + A 3 y = x 3 + A 2 x 2 + A 4 x + A 6 ; A i . Soit M = ( a / d 2 , b / d 3 ) avec ( a , d ) = 1 , un point rationnel sur cette courbe. Pour tout entier m , on exprime les coordonnées de m M sous la forme : m M = φ m ( M ) ψ n 2 ( m ) , ω m ( M ) ψ m 3 ( M ) = φ ^ m d 2 ψ ^ m 2 , ω ^ m d 3 ψ ^ m 3 , φ m , ψ _ m , ω m [ A 1 , , A 6 , x , y ] et φ ^ m , ψ ^ m , ω ^ m sont déduits par multiplication par des puissances convenables de d .Soit p un nombre premier impair et supposons que M ( mod p ) est non singulier et que le rang d’apparition de p dans la suite d’entiers ( ψ ^ m ) est supérieur ou égal à trois. Notons ce rang par r = r ( p ) et soit ν p ( ψ ^ r ) = e 0 1 . Nous montrons que la suite ( ψ ^ m ) ...

Currently displaying 841 – 860 of 1274