Page 1

Displaying 1 – 2 of 2

Showing per page

Markoff numbers and ambiguous classes

Anitha Srinivasan (2009)

Journal de Théorie des Nombres de Bordeaux

The Markoff conjecture states that given a positive integer c , there is at most one triple ( a , b , c ) of positive integers with a b c that satisfies the equation a 2 + b 2 + c 2 = 3 a b c . The conjecture is known to be true when c is a prime power or two times a prime power. We present an elementary proof of this result. We also show that if in the class group of forms of discriminant d = 9 c 2 - 4 , every ambiguous form in the principal genus corresponds to a divisor of 3 c - 2 , then the conjecture is true. As a result, we obtain criteria in terms of...

Currently displaying 1 – 2 of 2

Page 1