Linear fractional transformations of continued fractions with bounded partial quotients
Let be a real number with continued fraction expansionand letbe a matrix with integer entries and nonzero determinant. If has bounded partial quotients, then also has bounded partial quotients. More precisely, if for all sufficiently large , then for all sufficiently large . We also give a weaker bound valid for all with . The proofs use the homogeneous Diophantine approximation constant . We show that