Minoration de combinaisons linéaires de deux logarithmes -adiques
We establish a new multiplicity lemma for solutions of a differential system extending Ramanujan’s classical differential relations. This result can be useful in the study of arithmetic properties of values of Riemann zeta function at odd positive integers (Nesterenko, 2011).
We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in -adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.