Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes
Nous montrons que l’inégalité de Liouville-Baker-Feldman est une conséquence facile d’une minoration de formes linéaires en deux logarithmes.
Nous montrons que l’inégalité de Liouville-Baker-Feldman est une conséquence facile d’une minoration de formes linéaires en deux logarithmes.
We study the question: How often do partial sums of power series of functions coalesce with convergents of the (simple) continued fractions of the functions? Our theorems quantitatively demonstrate that the answer is: not very often. We conjecture that in most cases there are only a finite number of partial sums coinciding with convergents. In many of these cases, we offer exact numbers in our conjectures.