Od funkcí periodických ke skoroperiodickým
Let and denote by the sum-of-digits function in base . For considerIn 1983, F. M. Dekking conjectured that this quantity is greater than and, respectively, less than for infinitely many , thereby claiming an absence of a drift (or Newman) phenomenon. In this paper we prove his conjecture.
Let ω be a sequence of positive integers. Given a positive integer n, we define rₙ(ω) = |(a,b) ∈ ℕ × ℕ : a,b ∈ ω, a+b = n, 0 < a < b|. S. Sidon conjectured that there exists a sequence ω such that rₙ(ω) > 0 for all n sufficiently large and, for all ϵ > 0, . P. Erdős proved this conjecture by showing the existence of a sequence ω of positive integers such that log n ≪ rₙ(ω) ≪ log n. In this paper, we prove an analogue of this conjecture in , where is a finite field of q elements....