Un problème concernant des nombres normaux.
Démonstration élémentaire de la finitude de l’ensemble de type associé à une suite de densité uniforme extérieure non nulle.
En partant des idées de Rosenbloom [7] et Hayman [5], Luis Báez-Duarte donne dans [1] une preuve probabiliste de la formule asymptotique de Hardy-Ramanujan pour les partitions d’un entier. Le principe général de la méthode repose sur la convergence en loi d’une famille de variables aléatoires vers la loi normale. Dans notre travail nous démontrons un théorème de type Liapounov (Chung [2]) qui justifie cette convergence. L’obtention de formules asymptotiques simples nécessite une condition dite Gaussienne...
Les suites de Rudin-Shapiro ont des propriétés extrémales en analyse harmonique. En remarquant qu’une telle suite est reconnaissable par un automate fini, nous en décrivons explicitement le spectre (type spectral maximal, multiplicité spectrale fonction multiplicité). Nous établissons par exemple, que la suite de Rudin-Shapiro généralisée à l’ordre contient dans son spectre une composante de Lebesgue, de multiplicité .
Any sequence of distinct numbers from [0,1] generates a binary tree by storing the numbers consecutively at the nodes according to a left-right algorithm (or equivalently by sorting the numbers according to the Quicksort algorithm). Let be the height of the tree generated by ObviouslyIf the sequences are generated by independent random variables having the uniform distribution on [0, 1], then it is well known that there exists > such that as for almost all sequences . Recently...