On limit distribution of the Matsumoto zeta-function
In this paper we extend Champernowne’s construction of normal numbers in base to the case and obtain an explicit construction of the generic point of the shift transformation of the set . We prove that the intersection of the considered lattice configuration with an arbitrary line is a normal sequence in base .
In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality |α - m/n| < ψ(n)/n with g.c.d.(m,n) = 1, there are infinitely many solutions in positive integers m and n for almost all α ∈ ℝ if and only if . As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition . In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field ℚ(√d) with a square-free integer d < 0, and show that a Vaaler...
Let be integers, and let be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequencecoincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences in -dimensional unit cube . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence (Korobov’s problem).
It is proved that a real-valued function , where I is an interval contained in [0,1), is not of the form with |q(x)|=1 a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.