Bounds and computational results for exponential sums related to cusp forms
The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.
Anne-Maria Ernvall-Hytönen, Arto Lepistö (2009)
Acta Mathematica Universitatis Ostraviensis
The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.
Isao Kiuchi, Yoshio Tanigawa (2006)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region .First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.
Jürgen Eichenauer-Herrmann, Harald Niederreiter (1994)
Acta Arithmetica
Sergei V. Konyagin, Vsevolod F. Lev (2004)
Journal de Théorie des Nombres de Bordeaux
Let be a finite subset of an abelian group and let be a closed half-plane of the complex plane, containing zero. We show that (unless possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of which belongs to . In other words, there exists a non-trivial character such that .
Jacek Pomykała (1993)
Colloquium Mathematicae
Imre Z. Ruzsa, Tom Sanders (2008)
Acta Arithmetica
Michael Fuchs (2002)
Journal de théorie des nombres de Bordeaux
We consider the -ary digital expansion of the first terms of an exponential sequence . Using a result due to Kiss and Tichy [8], we prove that the average number of occurrences of an arbitrary digital block in the last digits is asymptotically equal to the expected value. Under stronger assumptions we get a similar result for the first digits, where is a positive constant. In both methods, we use estimations of exponential sums and the concept of discrepancy of real sequences modulo ...
Jean Bourgain, Igor E. Shparlinski (2008)
Acta Arithmetica
Chan, Tsz Ho (2004)
Integers
Edwin El-Mahassini (2008)
Revista Matemática Complutense
Mario Lamberger, Jörg M. Thuswaldner (2003)
Mathematica Slovaca
Olivier Ramaré (2010)
Journal de Théorie des Nombres de Bordeaux
We explore numerically the eigenvalues of the hermitian formwhen . We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.
U. Balakrishnan, Y.-F. S. Pétermann (1999)
Acta Arithmetica
J. H. Loxton (2000)
Acta Arithmetica
Yangbo Ye (2000)
Acta Arithmetica
Grigori Kolesnik (2003)
Acta Arithmetica
Norbert Hegyvári, François Hennecart (2009)
Acta Arithmetica
Jörg Brüdern, Alberto Perelli (1999)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Jean-Marie De Koninck, Imre Kátai (2011)
Acta Arithmetica
Todd Cochrane (2002)
Acta Arithmetica