The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove explicit upper bounds for weighted sums over prime numbers in arithmetic progressions with slowly varying weight functions. The results generalize the well-known Brun-Titchmarsh inequality.
I. Introduction. In 1946, P. Erdős [2] proved that if a real-valued additive arithmetical function f satisfies the condition: f(n+1) - f(n) → 0, n → ∞, then there exists a constant C such that f(n) = C log n for all n in ℕ*. Later, I. Kátai [3,4] was led to conjecture that it was possible to determine additive arithmetical functions f and g satisfying the condition: there exist a real number l, a, c in ℕ*, and integers b, d such that f(an+b) - g(cn+d) → l, n → ∞. This problem has been treated...
T. Cochrane and R. E. Dressler [CD] proved that the abc-conjecture implies that, for every > 0, the gap between two consecutive numbers A with two exceptions given in Table 2.
Currently displaying 1 –
20 of
224