Page 1 Next

Displaying 1 – 20 of 164

Showing per page

Ternary quadratic forms with rational zeros

John Friedlander, Henryk Iwaniec (2010)

Journal de Théorie des Nombres de Bordeaux

We consider the Legendre quadratic forms ϕ a b ( x , y , z ) = a x 2 + b y 2 - z 2 and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers 1 a A , 1 b B , for which the form ϕ a b has a non-trivial rational zero. Under certain mild conditions on the integers a , b , we are able to find the asymptotic formula for the number of such forms.

The asymptotic behaviour of the counting functions of Ω-sets in arithmetical semigroups

Maciej Radziejewski (2014)

Acta Arithmetica

We consider an axiomatically-defined class of arithmetical semigroups that we call simple L-semigroups. This class includes all generalized Hilbert semigroups, in particular the semigroup of non-zero integers in any algebraic number field. We show, for all positive integers k, that the counting function of the set of elements with at most k distinct factorization lengths in such a semigroup has oscillations of logarithmic frequency and size x ( l o g x ) - M for some M>0. More generally, we show a result on...

Currently displaying 1 – 20 of 164

Page 1 Next