O číslech spřízněných a dokonalých. [II.]
A homothetic arithmetic function of ratio is a function such that for every . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of in terms of the period and the ratio of .
For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.