Gaps between primes, and the pair correlation of zeros of the zeta-function
We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).
Suppose that is a primitive Hecke eigenform or a Mass cusp form for with normalized eigenvalues and let be a real number. We consider the sum and show that for every and . The same problem was considered for the case , that is for the full modular group in Lü (2012) and Kanemitsu et al. (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for . Since the result is valid for arbitrary...
In a letter written to Landau in 1935, Schur stated that for any integer , there are primes such that . In this note, we use the Prime Number Theorem and extend Schur’s result to show that for any integers and real , there exist primes such that