Majoration explicite de l'ordre maximum d'un élément du groupe symétrique
Page 1 Next
Jean-Pierre Massias (1984)
Annales de la Faculté des sciences de Toulouse : Mathématiques
B. LANDREAU (1987/1988)
Seminaire de Théorie des Nombres de Bordeaux
François Dress (1977)
Mémoires de la Société Mathématique de France
Amir Mohammadi, Hee Oh (2015)
Journal of the European Mathematical Society
Let and for and when for , we obtain an effective archimedean counting result for a discrete orbit of in a homogeneous space where is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family of compact subsets, there exists such that for an explicit measure on which depends on . We also apply the affine sieve and describe the distribution of almost primes on orbits of in arithmetic settings....
John Friedlander (1971)
Mathematische Annalen
Kai-Man Tsang (1995)
Acta Arithmetica
Yuk-Kam Lau, Kai-Man Tsang (1995)
Journal de théorie des nombres de Bordeaux
H. Halberstam, H.-E. Richert (1971)
Acta Arithmetica
Guangshi Lü (2013)
Open Mathematics
After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. , where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for and .
Zhang, Deyu, Zhai, Wenguang (2010)
Journal of Integer Sequences [electronic only]
Bordellès, Olivier (2007)
Journal of Integer Sequences [electronic only]
David Johnson (1979)
Journal für die reine und angewandte Mathematik
Hengcai Tang, Youjun Wang (2024)
Czechoslovak Mathematical Journal
Let be a nonnormal cubic extension which is given by an irreducible polynomial . Denote by the Dedekind zeta-function of the field and the number of integral ideals in with norm . In this note, by the higher integral mean values and subconvexity bound of automorphic -functions, the second and third moment of is considered, i.e., where , are polynomials of degree 1, 4, respectively, is an arbitrarily small number.
Dieter Klusch (1986)
Mathematische Zeitschrift
A. Lefébure (1884)
Annales scientifiques de l'École Normale Supérieure
Noorani, Mohd. Salmi Md. (1999)
Bulletin of the Malaysian Mathematical Society. Second Series
Jürgen G. Hinz (1986/1987)
Manuscripta mathematica
E. Fouvry, C. Mauduit (1996)
Acta Arithmetica
G. Robin (1983)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Paul Erdös (1973/1974)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Page 1 Next