A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers
We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.
The main purpose of this paper is to use the M. Toyoizumi's important work, the properties of the Dedekind sums and the estimates for character sums to study a hybrid mean value of the Dedekind sums, and give a sharper asymptotic formula for it.
The main purpose of this paper is using the mean value formula of Dirichlet L-functions and the analytic methods to study a hybrid mean value problem related to certain Hardy sums and Kloosterman sums, and give some interesting mean value formulae and identities for it.
The main purpose of this paper is to study a hybrid mean value problem related to the Dedekind sums by using estimates of character sums and analytic methods.
In this paper we study the orthogonality of Fourier coefficients of holomorphic cusp forms in the sense of large sieve inequality. We investigate the family of GL 2 cusp forms modular with respect to the congruence subgroups Γ1(q), with additional averaging over the levels q ∼ Q. We obtain the orthogonality in the range N ≪ Q 2−δ for any δ > 0, where N is the length of linear forms in the large sieve.
This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.