On the congruence , where q is a prime and f is a k-normal polynomial
We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product for distinct positive integers , and . In particular, we show that, under some natural conditions on rational functions , the number of distinct zeros and poles of the shifted products and grows linearly with if . We also obtain a version of this result for rational functions over a finite field.
If f(x) and g(x) are relatively prime polynomials in ℤ[x] satisfying certain conditions arising from a theorem of Capelli and if n is an integer > N for some sufficiently large N, then the non-reciprocal part of f(x)xⁿ + g(x) is either identically ±1 or is irreducible over the rationals. This result follows from work of Schinzel in 1965. We show here that under the conditions that f(x) and g(x) are relatively prime 0,1-polynomials (so each coefficient is either 0 or 1) and f(0) = g(0) = 1, one...
We explicitly provide numbers , such that each irreducible factor of a polynomial with integer coefficients has a degree greater than or equal to and can have at most irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.