A remark on Hilbert's Theorem 92
Soit un nombre premier impair. Soit une extension abélienne réelle de de degré premier à et soit son groupe de Galois; soit () un caractère -adique irréductible de . Soit la -extension abélienne maximale de non ramifiée en dehors de et soit le -module Gal ; (la -composante de ) est un module fini sur l’anneau des entiers de (corps des valeurs sur d’un caractère de degré 1 divisant ). On construit explicitement pour tout un élément de qui annule le module...