On the Factorization of the Relative Class Number in Terms of Frobenius Divisions.
We study the capitulation of -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields , where and are different primes. For each of the three quadratic extensions inside the absolute genus field of , we determine a fundamental system of units and then compute the capitulation kernel of . The generators of the groups and are also determined from which we deduce that is smaller than the relative genus field . Then we prove that each...
Let be an imaginary cyclic quartic number field whose 2-class group is of type , i.e., isomorphic to . The aim of this paper is to determine the structure of the Iwasawa module of the genus field of .
Let K, L be algebraic number fields with K ⊆ L, and , their respective rings of integers. We consider the trace map and the -ideal . By I(L/K) we denote the group indexof in (i.e., the norm of over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of (Theorem 1). The case...