Displaying 201 – 220 of 400

Showing per page

On delta sets and their realizable subsets in Krull monoids with cyclic class groups

Scott T. Chapman, Felix Gotti, Roberto Pelayo (2014)

Colloquium Mathematicae

Let M be a commutative cancellative monoid. The set Δ(M), which consists of all positive integers which are distances between consecutive factorization lengths of elements in M, is a widely studied object in the theory of nonunique factorizations. If M is a Krull monoid with cyclic class group of order n ≥ 3, then it is well-known that Δ(M) ⊆ {1,..., n-2}. Moreover, equality holds for this containment when each class contains a prime divisor from M. In this note, we consider the question of determining...

On Minkowski units constructed by special values of Siegel modular functions

Takashi Fukuda, Keiichi Komatsu (2003)

Journal de théorie des nombres de Bordeaux

Using the special values of Siegel modular functions, we construct Minkowski units for the ray class field k 6 of ( e x p ( 2 π i / 5 ) ) modulo 6 . Our work is based on investigating the prime decomposition of the special values and describing explicitly the action of the Galois group G ( k 6 / ) for the special values. Futhermore we construct the full unit group of k 6 using modular and circular units under the GRH.

Currently displaying 201 – 220 of 400