Displaying 81 – 100 of 172

Showing per page

On the arithmetic of cross-ratios and generalised Mertens’ formulas

Jouni Parkkonen, Frédéric Paulin (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension 5 . We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over , counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian...

On the n -torsion subgroup of the Brauer group of a number field

Hershy Kisilevsky, Jack Sonn (2003)

Journal de théorie des nombres de Bordeaux

Given a number field K Galois over the rational field , and a positive integer n prime to the class number of K , there exists an abelian extension L / K (of exponent n ) such that the n -torsion subgroup of the Brauer group of K is equal to the relative Brauer group of L / K .

On traces of the Brandt-Eichler matrices

Juliusz Brzezinski (1998)

Journal de théorie des nombres de Bordeaux

We compute the numbers of locally principal ideals with given norm in a class of definite quaternion orders and the traces of the Brandt-Eichler matrices corresponding to these orders. As an application, we compute the numbers of representations of algebraic integers by the norm forms of definite quaternion orders with class number one as well as we obtain class number relations for some CM-fields.

Plongement d'une extension diédrale dans une extension diédrale ou quaternionienne

Bernadette Perrin-Riou (1980)

Annales de l'institut Fourier

On utilise les méthodes de Neukirch et Poitou pour écrire les conditions locales et globales des problèmes de plongement. Le cas étudié ici est celui du plongement d’une extension diédrale dans une extension diédrale ou quaternionienne, le corps de base étant un corps de nombres.

Polynomials and degrees of maps in real normed algebras

Takis Sakkalis (2020)

Communications in Mathematics

Let 𝒜 be the algebra of quaternions or octonions 𝕆 . In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial f ( t ) 𝒜 [ t ] has a root in 𝒜 . As a consequence, the Jacobian determinant | J ( f ) | is always non-negative in 𝒜 . Moreover, using the idea of the topological degree we show that a regular polynomial g ( t ) over 𝒜 has also a root in 𝒜 . Finally, utilizing multiplication ( * ) in 𝒜 , we prove various results on the topological degree of products...

Currently displaying 81 – 100 of 172