On the classgroups of imaginary abelian fields
Let be an odd prime, an odd, -adic Dirichlet character and the cyclic imaginary extension of associated to . We define a “-part” of the Sylow -subgroup of the class group of and prove a result relating its -divisibility to that of the generalized Bernoulli number . This uses the results of Mazur and Wiles in Iwasawa theory over . The more difficult case, in which divides the order of is our chief concern. In this case the result is new and confirms an earlier conjecture of G....