Prolongement analytique des sommes de Gauss, I
We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the -adic numbers. We apply this theory to the study of elliptic operators over the -adic numbers and determine their asymptotic spectral behavior.
The classical Raabe formula computes a definite integral of the logarithm of Euler’s -function. We compute -adic integrals of the -adic -functions, both Diamond’s and Morita’s, and show that each of these functions is uniquely characterized by its difference equation and -adic Raabe formula. We also prove a Raabe-type formula for -adic Hurwitz zeta functions.
Nous traitons des liens entre équations différentielles -adiques et représentations -adiques de corps locaux de caractéristique , en nous concentrant sur le cas Bessel. Nous démontrons que toute équation de Bessel -adique normalisée à la Dwork, sur une fine couronne au bord du disque à l’infini, se trivialise sur un certain revêtement étale de cette couronne (revêtement provenant d’une extension finie séparable de ). Le cas difficile est , et nous explicitons complètement le revêtement et...
Nous construisons un complexe de représentations localement analytiques de , associé à certaines représentations semi-stables de dimension du groupe de Galois absolu de . Nous montrons ensuite que l’on peut retrouver le -module filtré de la représentation galoisienne en considérant les morphismes, dans la catégorie dérivée des -modules, de ce complexe dans le complexe de de Rham de l’espace de Drinfel’d de dimension . La preuve requiert le calcul de certains espaces de cohomologie localement...
In this paper, by considering higher-order degenerate Bernoulli and Euler polynomials which were introduced by Carlitz, we investigate some properties of mixed-type of those polynomials. In particular, we give some identities of mixed-type degenerate special polynomials which are derived from the fermionic integrals on Zp and the bosonic integrals on Zp.