A new -analogue of Bernoulli polynomials associated with -adic -integrals.
Introduction. Recently J. Rutkowski (see [3]) has defined the p-adic analogue of the Walsh system, which we shall denote by . The system is defined in the space C(ℤₚ,ℂₚ) of ℂₚ-valued continuous functions on ℤₚ. J. Rutkowski has also considered some questions concerning expansions of functions from C(ℤₚ,ℂₚ) with respect to . This paper is a remark to Rutkowski’s paper. We define another system in C(ℤₚ,ℂₚ), investigate its properties and compare it to the system defined by Rutkowski. The system...
We extend Prasad’s results on the existence of trilinear forms on representations of of a local field, by permitting one or more of the representations to be reducible principal series, with infinite-dimensional irreducible quotient. We apply this in a global setting to compute (unconditionally) the dimensions of the subspaces of motivic cohomology of the product of two modular curves constructed by Beilinson.
We prove that if an n×n matrix defined over ℚ ₚ (or more generally an arbitrary complete, discretely-valued, non-Archimedean field) satisfies a certain congruence property, then it has a strictly maximal eigenvalue in ℚ ₚ, and that iteration of the (normalized) matrix converges to a projection operator onto the corresponding eigenspace. This result may be viewed as a p-adic analogue of the Perron-Frobenius theorem for positive real matrices.