Displaying 61 – 80 of 116

Showing per page

Isomorphisms of algebraic number fields

Mark van Hoeij, Vivek Pal (2012)

Journal de Théorie des Nombres de Bordeaux

Let ( α ) and ( β ) be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, ( β ) ( α ) . The algorithm is particularly efficient if there is only one isomorphism.

Lower powers of elliptic units

Stefan Bettner, Reinhard Schertz (2001)

Journal de théorie des nombres de Bordeaux

In the previous paper [Sch2] it has been shown that ray class fields over quadratic imaginary number fields can be generated by simple products of singular values of the Klein form defined below. In the present article the second named author has constructed more general products that are contained in ray class fields thereby correcting Theorem 2 of [Sch2]. An algorithm for the computation of the algebraic equations of the numbers in Theorem 1 of this paper has been implemented in a KASH program...

Maximal unramified extensions of imaginary quadratic number fields of small conductors

Ken Yamamura (1997)

Journal de théorie des nombres de Bordeaux

We determine the structures of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 420 ( 719 under the Generalized Riemann Hypothesis). For all such K , K u r is K , the Hilbert class field of K , the second Hilbert class field of K , or the third Hilbert class field of K . The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class...

Nombre de classes et unités des corps de nombres cycliques quintiques d'E. Lehmer

Stéphane Jeannin (1996)

Journal de théorie des nombres de Bordeaux

Le but de cet article est l’étude des corps cycliques quintiques définis par les polynômes d’E. Lehmer. On calcule premièrement le conducteur de ces corps dans le cas général (non nécessairement premier) puis on généralise un théorème (qui donne les unités de ces corps) démontré par R. Schoof et L.C. Washington. Par la méthode de dévissage des unités cyclotomiques, qui calcule le nombre de classes et les unités, on dresse une table de ces corps particuliers (de conducteur f 3000000 ) et de leur nombre de...

Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis

Kevin J. McGown (2012)

Journal de Théorie des Nombres de Bordeaux

Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant Δ = 7 2 , 9 2 , 13 2 , 19 2 , 31 2 , 37 2 , 43 2 , 61 2 , 67 2 , 103 2 , 109 2 , 127 2 , 157 2 . A large part of the proof is in establishing the following more general result: Let K be a Galois number field of odd prime degree and conductor f . Assume the GRH for ζ K ( s ) . If 38 ( - 1 ) 2 ( log f ) 6 log log f < f , then K is not norm-Euclidean.

On computing Belyi maps

J. Sijsling, J. Voight (2014)

Publications mathématiques de Besançon

We survey methods to compute three-point branched covers of the projective line, also known as Belyĭ maps. These methods include a direct approach, involving the solution of a system of polynomial equations, as well as complex analytic methods, modular forms methods, and p -adic methods. Along the way, we pose several questions and provide numerous examples.

On computing subfields. A detailed description of the algorithm

Jürgen Klüners (1998)

Journal de théorie des nombres de Bordeaux

Let ( α ) be an algebraic number field given by the minimal polynomial f of α . We want to determine all subfields ( β ) ( α ) of given degree. It is convenient to describe each subfield by a pair ( g , h ) [ t ] × [ t ] such that g is the minimal polynomial of β = h ( α ) . There is a bijection between the block systems of the Galois group of f and the subfields of ( α ) . These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding...

On reduced Arakelov divisors of real quadratic fields

Ha Thanh Nguyen Tran (2016)

Acta Arithmetica

We generalize the concept of reduced Arakelov divisors and define C-reduced divisors for a given number C ≥ 1. These C-reduced divisors have remarkable properties, similar to the properties of reduced ones. We describe an algorithm to test whether an Arakelov divisor of a real quadratic field F is C-reduced in time polynomial in l o g | Δ F | with Δ F the discriminant of F. Moreover, we give an example of a cubic field for which our algorithm does not work.

On relative pure cyclic fields with power integral bases

Mohammed Sahmoudi, Mohammed Elhassani Charkani (2023)

Mathematica Bohemica

Let L = K ( α ) be an extension of a number field K , where α satisfies the monic irreducible polynomial P ( X ) = X p - β of prime degree belonging to 𝔬 K [ X ] ( 𝔬 K is the ring of integers of K ). The purpose of this paper is to study the monogenity of L over K by a simple and practical version of Dedekind’s criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field L with a...

On the class numbers of real cyclotomic fields of conductor pq

Eleni Agathocleous (2014)

Acta Arithmetica

The class numbers h⁺ of the real cyclotomic fields are very hard to compute. Methods based on discriminant bounds become useless as the conductor of the field grows, and methods employing Leopoldt's decomposition of the class number become hard to use when the field extension is not cyclic of prime power. This is why other methods have been developed, which approach the problem from different angles. In this paper we extend one of these methods that was designed for real cyclotomic fields of prime...

Currently displaying 61 – 80 of 116