Quadratic factors of f(x) -g(y)
Page 1 Next
Yuri F. Bilu (1999)
Acta Arithmetica
Joseph Yucas (1981)
Acta Arithmetica
Richard Elman, Tsit-Yuen Lam (1973)
Mathematische Zeitschrift
Mammone, Pasquale, Moresi, Remo (1995)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Richard Elman, T.Y. Lam (1976)
Mathematische Annalen
Repka, Joe (1988)
International Journal of Mathematics and Mathematical Sciences
F. Lorenz (1976)
Mémoires de la Société Mathématique de France
Wilfried Meißner (1982)
Mathematische Zeitschrift
A. Prestel (1973)
Mathematische Zeitschrift
Shen, Chun-Yen (2008)
The Electronic Journal of Combinatorics [electronic only]
Władysław Marcinek (2003)
Banach Center Publications
An algebraic model for the relation between a certain classical particle system and the quantum environment is proposed. The quantum environment is described by the category of possible quantum states. The initial particle system is represented by an associative algebra in the category of states. The key new observation is that particle interactions with the quantum environment can be described in terms of Hopf-Galois theory. This opens up a possibility to use quantum groups in our model of particle...
Knus, Max-Albert, Tignol, Jean-Pierre (2003)
International Journal of Mathematics and Mathematical Sciences
J. Tabor (1990)
Aequationes mathematicae
Wituła, Roman, Słota, Damian (2007)
Journal of Integer Sequences [electronic only]
Ruben Schramm (1974)
Mathematische Zeitschrift
Vichian Laohakosol, Suphawan Janphaisaeng (2010)
Czechoslovak Mathematical Journal
A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established....
Michailov, Ivo (2005)
Serdica Mathematical Journal
2000 Mathematics Subject Classification: 12F12We describe several types of Galois extensions having as Galois group the quaternion group Q16 of order 16.This work is partially supported by project of Shumen University.
Peter Schmid (2014)
Acta Arithmetica
In any normal number field having Q₈, the quaternion group of order 8, as Galois group over the rationals, at least two finite primes must ramify. The classical example by Dedekind of such a field is extraordinary in that it is totally real and only the primes 2 and 3 are ramified. In this note we describe in detail all Q₈-fields over the rationals where only two (finite) primes are ramified. We also show that, for any integer n>3 and any prime , there exist unique real and complex normal number...
Danielle GONDARD (1973/1974)
Seminaire de Théorie des Nombres de Bordeaux
David Harari (2007)
Bulletin de la Société Mathématique de France
On étudie différentes propriétés d’approximation pour des espaces homogènes (à stabilisateur fini) de sur un corps de nombres. On discute également du lien avec le problème de Galois inverse et on établit une formule pour le groupe de Brauer non ramifié de .
Page 1 Next