Loading [MathJax]/extensions/MathZoom.js
Displaying 101 –
120 of
257
Let k be a field and k[x,y] the polynomial ring in two variables over k. Let D be a higher k-derivation on k[x,y] and D̅ the extension of D on k(x,y). We prove that if the kernel of D is not equal to k, then the kernel of D̅ is equal to the quotient field of the kernel of D.
Let be a commutative Noetherian ring with identity and an ideal of . It is shown that, if is a non-zero minimax -module such that for all , then the -module is -cominimax for all . In fact, is -cofinite for all . Also, we prove that for a weakly Laskerian -module , if is local and is a non-negative integer such that for all , then and are weakly Laskerian for all and all . As a consequence, the set of associated primes of is finite for all , whenever and...
Let and be ideals of a Noetherian local ring and let be a nonzero finitely generated -module. We study the relation between the vanishing of and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian -module is equal to its integral closure relative to the Artinian -module .
Let (U) denote the algebra of holomorphic functions on an open subset U ⊂ ℂⁿ and Z ⊂ (U) its finite-dimensional vector subspace. By the theory of least spaces of de Boor and Ron, there exists a projection from the local ring onto the space of germs of elements of Z at b. At a general point b ∈ U its kernel is an ideal and induces the structure of an Artinian algebra on . In particular, this holds at points where the kth jets of elements of Z form a vector bundle for each k ∈ ℕ. For an embedded...
On the ring of polynomials in n variables over a field special isomorphisms ’s of into are defined which preserve the greatest common divisor of two polynomials. The ring is extended to the ring and the ring of generalized polynomials in such a way that the exponents of the variables are non-negative rational numbers and rational numbers, respectively. The isomorphisms ’s are extended to automorphisms ’s of the ring . Using the property that the isomorphisms ’s preserve GCD it...
Currently displaying 101 –
120 of
257