Page 1 Next

Displaying 1 – 20 of 36

Showing per page

Castelnuovo-Mumford regularity of products of ideals.

Aldo Conca, Jürgen Herzog (2003)

Collectanea Mathematica

The Castelnuovo-Mumford regularity reg(M) is one of the most important invariants of a finitely generated graded module M over a polynomial ring R. For instance, it measures the amount of computational resources that working with M requires. In general one knows that the regularity of a module can be doubly exponential in the degrees of the minimal generators and in the number of the variables. On the other hand, in many situations one has or one conjectures a much better behavior. One may ask,...

Cellular covers of cotorsion-free modules

Rüdiger Göbel, José L. Rodríguez, Lutz Strüngmann (2012)

Fundamenta Mathematicae

In this paper we improve recent results dealing with cellular covers of R-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory. Recall that a homomorphism of R-modules π: G → H is called a cellular cover over H if π induces an isomorphism π : H o m R ( G , G ) H o m R ( G , H ) , where π⁎(φ) = πφ for each φ H o m R ( G , G ) (where maps are acting on the left). On the one hand,...

CF-modules over commutative rings

Ahmed Najim, Mohammed Elhassani Charkani (2018)

Commentationes Mathematicae Universitatis Carolinae

Let R be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over R is a CF-module. When R is local, we characterize the CF-modules over R whose tensor product is a CF-module.

Cohen-Macaulayness of multiplication rings and modules

R. Naghipour, H. Zakeri, N. Zamani (2003)

Colloquium Mathematicae

Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian.

Cominimaxness of local cohomology modules

Moharram Aghapournahr (2019)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring, I an ideal of R . Let t 0 be an integer and M an R -module such that Ext R i ( R / I , M ) is minimax for all i t + 1 . We prove that if H I i ( M ) is FD 1 (or weakly Laskerian) for all i < t , then the R -modules H I i ( M ) are I -cominimax for all i < t and Ext R i ( R / I , H I t ( M ) ) is minimax for i = 0 , 1 . Let N be a finitely generated R -module. We prove that Ext R j ( N , H I i ( M ) ) and Tor j R ( N , H I i ( M ) ) are I -cominimax for all i and j whenever M is minimax and H I i ( M ) is FD 1 (or weakly Laskerian) for all i .

Commutative rings whose certain modules decompose into direct sums of cyclic submodules

Farid Kourki, Rachid Tribak (2023)

Czechoslovak Mathematical Journal

We provide some characterizations of rings R for which every (finitely generated) module belonging to a class 𝒞 of R -modules is a direct sum of cyclic submodules. We focus on the cases, where the class 𝒞 is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.

Currently displaying 1 – 20 of 36

Page 1 Next