Some remarks on generalized Cohen-Macaulay rings.
We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
We introduce and study a new class of ring extensions based on a new formula involving the heights of their primes. We compare them with the classical altitude inequality and altitude formula, and we give another characterization of locally Jaffard domains, and domains satisfying absolutely the altitude inequality (resp., the altitude formula). Then we study the extensions R ⊆ S where R satisfies the corresponding condition with respect to S (Definition 3.1). This leads to a new characterization...
Seguendo le idee presentate nei lavori [1] e [2] si studiano le proprietà dei gruppi di -omotopia per moduli ed omomorfismi di moduli.
Let be a commutative Noetherian ring with identity and an ideal of . It is shown that, if is a non-zero minimax -module such that for all , then the -module is -cominimax for all . In fact, is -cofinite for all . Also, we prove that for a weakly Laskerian -module , if is local and is a non-negative integer such that for all , then and are weakly Laskerian for all and all . As a consequence, the set of associated primes of is finite for all , whenever and...
Let be a Noetherian local ring and a finitely generated -module. We say has maximal depth if there is an associated prime of such that depth . In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.
We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal is a CM Stanley ideal, then is a Stanley ideal as well, where is the polarization of .
Let be a star-operation on and the finite character star-operation induced by . The purpose of this paper is to study when or . In particular, we prove that if every prime ideal of is -invertible, then , and that if is a unique -factorable domain, then is a Krull domain.
Let be the ring of real-valued continuous functions on a frame . In this paper, strongly fixed ideals and characterization of maximal ideals of which is used with strongly fixed are introduced. In the case of weakly spatial frames this characterization is equivalent to the compactness of frames. Besides, the relation of the two concepts, fixed and strongly fixed ideals of , is studied particularly in the case of weakly spatial frames. The concept of weakly spatiality is actually weaker than...
In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.