Displaying 21 – 40 of 61

Showing per page

Some remarks on Prüfer modules

S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel (2013)

Discussiones Mathematicae - General Algebra and Applications

We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.

Some remarks on the altitude inequality

Noômen Jarboui (1999)

Colloquium Mathematicae

We introduce and study a new class of ring extensions based on a new formula involving the heights of their primes. We compare them with the classical altitude inequality and altitude formula, and we give another characterization of locally Jaffard domains, and domains satisfying absolutely the altitude inequality (resp., the altitude formula). Then we study the extensions R ⊆ S where R satisfies the corresponding condition with respect to S (Definition 3.1). This leads to a new characterization...

Some results on homotopy theory of modules

Zheng-Xu He (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Seguendo le idee presentate nei lavori [1] e [2] si studiano le proprietà dei gruppi di i -omotopia per moduli ed omomorfismi di moduli.

Some results on the local cohomology of minimax modules

Ahmad Abbasi, Hajar Roshan-Shekalgourabi, Dawood Hassanzadeh-Lelekaami (2014)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring with identity and I an ideal of R . It is shown that, if M is a non-zero minimax R -module such that dim Supp H I i ( M ) 1 for all i , then the R -module H I i ( M ) is I -cominimax for all i . In fact, H I i ( M ) is I -cofinite for all i 1 . Also, we prove that for a weakly Laskerian R -module M , if R is local and t is a non-negative integer such that dim Supp H I i ( M ) 2 for all i < t , then Ext R j ( R / I , H I i ( M ) ) and Hom R ( R / I , H I t ( M ) ) are weakly Laskerian for all i < t and all j 0 . As a consequence, the set of associated primes of H I i ( M ) is finite for all i 0 , whenever dim R / I 2 and...

Squarefree monomial ideals with maximal depth

Ahad Rahimi (2020)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a Noetherian local ring and M a finitely generated R -module. We say M has maximal depth if there is an associated prime 𝔭 of M such that depth M = dim R / 𝔭 . In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.

Stanley decompositions and polarization

Sarfraz Ahmad (2011)

Czechoslovak Mathematical Journal

We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal I is a CM Stanley ideal, then I p is a Stanley ideal as well, where I p is the polarization of I .

Star-invertible ideals of integral domains

Gyu Whan Chang, Jeanam Park (2003)

Bollettino dell'Unione Matematica Italiana

Let be a star-operation on R and s the finite character star-operation induced by . The purpose of this paper is to study when = v or s = t . In particular, we prove that if every prime ideal of R is -invertible, then = v , and that if R is a unique -factorable domain, then R is a Krull domain.

Strongly fixed ideals in C ( L ) and compact frames

A. A. Estaji, A. Karimi Feizabadi, M. Abedi (2015)

Archivum Mathematicum

Let C ( L ) be the ring of real-valued continuous functions on a frame L . In this paper, strongly fixed ideals and characterization of maximal ideals of C ( L ) which is used with strongly fixed are introduced. In the case of weakly spatial frames this characterization is equivalent to the compactness of frames. Besides, the relation of the two concepts, fixed and strongly fixed ideals of C ( L ) , is studied particularly in the case of weakly spatial frames. The concept of weakly spatiality is actually weaker than...

Strongly rectifiable and S-homogeneous modules

Libuše Tesková (2000)

Discussiones Mathematicae - General Algebra and Applications

In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.

Currently displaying 21 – 40 of 61