On the arithmetical rank of a special class of minimal varieties.
Let , , be ideals of a Noetherian local ring . Let and be finitely generated -modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of and , where is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and is the Matlis dual functor. We show that if is a -dimensional complete Cohen-Macaulay ring and ...
In this paper, we will present several necessary and sufficient conditions on a commutative ring such that the algebraic and geometric local cohomologies are equivalent.
We study, in certain cases, the notions of finiteness and stability of the set of associated primes and vanishing of the homogeneous pieces of graded generalized local cohomology modules.
Let be a local ring and a semidualizing module of . We investigate the behavior of certain classes of generalized Cohen-Macaulay -modules under the Foxby equivalence between the Auslander and Bass classes with respect to . In particular, we show that generalized Cohen-Macaulay -modules are invariant under this equivalence and if is a finitely generated -module in the Auslander class with respect to such that is surjective Buchsbaum, then is also surjective Buchsbaum.
Let be a commutative Noetherian ring, an ideal of and an -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and -minimaxness of local cohomology modules. We show that if is a minimax -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if is a nonnegative integer such that is a minimax -module for all and for all , then the set is finite. Also, if is minimax for...
It is shown that for any Artinian modules , is the greatest integer such that .
Let be a field and be the standard bigraded polynomial ring over . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” -modules with respect to . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to are considered.
Let Φ be a system of ideals on a commutative Noetherian ring R, and let S be a multiplicatively closed subset of R. The first result shows that the topologies defined by and are equivalent if and only if S is disjoint from the quintasymptotic primes of Φ. Also, by using the generalized Lichtenbaum-Hartshorne vanishing theorem we show that, if (R,) is a d-dimensional local quasi-unmixed ring, then , the dth local cohomology module of R with respect to Φ, vanishes if and only if there exists...
We study finitely generated bigraded Buchsbaum modules over a standard bigraded polynomial ring with respect to one of the irrelevant bigraded ideals. The regularity and the Hilbert function of graded components of local cohomology at the finiteness dimension level are considered.
Let be a commutative Noetherian ring and let be a semidualizing -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every -injective module , the character module is -flat, then the class is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class is covering....
Let be a commutative Noetherian ring, and let be a semidualizing -module. The notion of -tilting -modules is introduced as the relative setting of the notion of tilting -modules with respect to . Some properties of tilting and -tilting modules and the relations between them are mentioned. It is shown that every finitely generated -tilting -module is -projective. Finally, we investigate some kernel subcategories related to -tilting modules.
Let be a Noetherian ring, and and be two ideals of . Let be a Serre subcategory of the category of -modules satisfying the condition and be a -module. As a generalization of the - and , the - of on is defined as --, and some properties of this concept are investigated. The relations between - and are studied, and it is proved that -, where is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with...
Let be an ideal of a commutative Noetherian ring and be a nonnegative integer. Let and be two finitely generated -modules. In certain cases, we give some bounds under inclusion for the annihilators of and in terms of minimal primary decomposition of the zero submodule of , which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.
Let be a commutative Noetherian ring, an ideal of , an -module and a non-negative integer. In this paper we show that the class of minimax modules includes the class of modules. The main result is that if the -module is finite (finitely generated), is -cofinite for all and is minimax then is -cofinite. As a consequence we show that if and are finite -modules and is minimax for all then the set of associated prime ideals of the generalized local cohomology module...