Local cohomology and Matlis duality.
Hellus, Michael, Stückrad, Jürgen (2007)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Rodney Y. Sharp (1977)
Mathematische Zeitschrift
Kamal Bahmanpour (2022)
Czechoslovak Mathematical Journal
Let be an ideal of a commutative Noetherian ring . It is shown that the -modules are -cofinite for all finitely generated -modules and all if and only if the -modules and are -cofinite for all finitely generated -modules , and all integers .
Kh. Ahmadi-Amoli (1998)
Colloquium Mathematicae
Bernd Ulrich, Craig Huneke (1992)
Mathematische Zeitschrift
J. Asadollahi, K. Khashyarmanesh, Sh. Salarian (2001)
Colloquium Mathematicae
Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal in Φ, if, for every prime ideal of A, there exists an integer k(), depending on , such that kills the general local cohomology module for every integer j less than a fixed integer n, where , then there exists an integer k such that for every j < n.
Michel André (1974)
Manuscripta mathematica
Ton Vorst (1979)
Mathematische Annalen
Craig Huneke, Ian M. Aberbach (1993)
Journal für die reine und angewandte Mathematik
Avramov, Luchezar L. (1999)
Annals of Mathematics. Second Series
H. Bass, E.H. Connell, D.L. Wright (1976)
Inventiones mathematicae
Paulo Ribenboim (1970/1971)
Séminaire Dubreil. Algèbre et théorie des nombres
Luchezar L. Avramov, Ragnar-Olaf Buchweitz (1993)
Compositio Mathematica
Guillermo Cortinas (1993)
Mathematica Scandinavica
Marie-Paule Malliavin-Brameret (1972/1973)
Séminaire Dubreil. Algèbre et théorie des nombres
Batoul Naal, Kazem Khashyarmanesh (2020)
Czechoslovak Mathematical Journal
Let be a commutative Noetherian local ring, be an ideal of and a finitely generated -module such that and , where is the cohomological dimension of with respect to and is the -grade of . Let be the Matlis dual functor, where is the injective hull of the residue field . We show that there exists the following long exact sequence where is a non-negative integer, is a regular sequence in on and, for an -module , is the th local cohomology module of with respect...
Amir Mafi (2009)
Czechoslovak Mathematical Journal
Let be a complete local ring, an ideal of and and two Matlis reflexive -modules with . We prove that if is a finitely generated -module, then is Matlis reflexive for all and in the following cases: (a) ; (b) ; where is the cohomological dimension of in ; (c) . In these cases we also prove that the Bass numbers of are finite.
Alexander Polishchuk, Arkady Vaintrob (2011)
Annales de l’institut Fourier
We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.
Reza Sazeedeh, Rasul Rasuli (2016)
Colloquium Mathematicae
Let R be a commutative noetherian ring, let be an ideal of R, and let be a subcategory of the category of R-modules. The condition , defined for R-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to belong to . In this paper, we define and study the class consisting of all modules satisfying . If and are ideals of R, we get a necessary and sufficient condition for to satisfy and simultaneously. We also find some sufficient...
Robert M. Fossum (1974/1975)
Séminaire Dubreil. Algèbre et théorie des nombres