Displaying 261 – 280 of 557

Showing per page

Local cohomology, cofiniteness and homological functors of modules

Kamal Bahmanpour (2022)

Czechoslovak Mathematical Journal

Let I be an ideal of a commutative Noetherian ring R . It is shown that the R -modules H I j ( M ) are I -cofinite for all finitely generated R -modules M and all j 0 if and only if the R -modules Ext R i ( N , H I j ( M ) ) and Tor i R ( N , H I j ( M ) ) are I -cofinite for all finitely generated R -modules M , N and all integers i , j 0 .

Local-global principle for annihilation of general local cohomology

J. Asadollahi, K. Khashyarmanesh, Sh. Salarian (2001)

Colloquium Mathematicae

Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal in Φ, if, for every prime ideal of A, there exists an integer k(), depending on , such that k ( ) kills the general local cohomology module H Φ j ( M ) for every integer j less than a fixed integer n, where Φ : = : Φ , then there exists an integer k such that k H Φ j ( M ) = 0 for every j < n.

Matlis dual of local cohomology modules

Batoul Naal, Kazem Khashyarmanesh (2020)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a commutative Noetherian local ring, 𝔞 be an ideal of R and M a finitely generated R -module such that 𝔞 M M and cd ( 𝔞 , M ) - grade ( 𝔞 , M ) 1 , where cd ( 𝔞 , M ) is the cohomological dimension of M with respect to 𝔞 and grade ( 𝔞 , M ) is the M -grade of 𝔞 . Let D ( - ) : = Hom R ( - , E ) be the Matlis dual functor, where E : = E ( R / 𝔪 ) is the injective hull of the residue field R / 𝔪 . We show that there exists the following long exact sequence 0 H 𝔞 n - 2 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n ( D ( H 𝔞 n ( M ) ) ) D ( M ) H 𝔞 n - 1 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n + 1 ( D ( H 𝔞 n ( M ) ) ) H 𝔞 n ( D ( H ( x 1 , ... , x n - 1 ) n - 1 ( M ) ) ) H 𝔞 n ( D ( H ( n - 1 M ) ) ) ... , where n : = cd ( 𝔞 , M ) is a non-negative integer, x 1 , ... , x n - 1 is a regular sequence in 𝔞 on M and, for an R -module L , H 𝔞 i ( L ) is the i th local cohomology module of L with respect...

Matlis reflexive and generalized local cohomology modules

Amir Mafi (2009)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a complete local ring, 𝔞 an ideal of R and N and L two Matlis reflexive R -modules with Supp ( L ) V ( 𝔞 ) . We prove that if M is a finitely generated R -module, then Ext R i ( L , H 𝔞 j ( M , N ) ) is Matlis reflexive for all i and j in the following cases: (a) dim R / 𝔞 = 1 ; (b) cd ( 𝔞 ) = 1 ; where cd is the cohomological dimension of 𝔞 in R ; (c) dim R 2 . In these cases we also prove that the Bass numbers of H 𝔞 j ( M , N ) are finite.

Matrix factorizations and singularity categories for stacks

Alexander Polishchuk, Arkady Vaintrob (2011)

Annales de l’institut Fourier

We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.

Melkersson condition on Serre subcategories

Reza Sazeedeh, Rasul Rasuli (2016)

Colloquium Mathematicae

Let R be a commutative noetherian ring, let be an ideal of R, and let be a subcategory of the category of R-modules. The condition C , defined for R-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to belong to . In this paper, we define and study the class consisting of all modules satisfying C . If and are ideals of R, we get a necessary and sufficient condition for to satisfy C and C simultaneously. We also find some sufficient...

Currently displaying 261 – 280 of 557