Displaying 421 – 440 of 557

Showing per page

Some algebraic properties of hypergraphs

Eric Emtander, Fatemeh Mohammadi, Somayeh Moradi (2011)

Czechoslovak Mathematical Journal

We consider Stanley-Reisner rings k [ x 1 , ... , x n ] / I ( ) where I ( ) is the edge ideal associated to some particular classes of hypergraphs. For instance, we consider hypergraphs that are natural generalizations of graphs that are lines and cycles, and for these we compute the Betti numbers. We also generalize some known results about chordal graphs and study a weak form of shellability.

Some bounds for the annihilators of local cohomology and Ext modules

Ali Fathi (2022)

Czechoslovak Mathematical Journal

Let 𝔞 be an ideal of a commutative Noetherian ring R and t be a nonnegative integer. Let M and N be two finitely generated R -modules. In certain cases, we give some bounds under inclusion for the annihilators of Ext R t ( M , N ) and H 𝔞 t ( M ) in terms of minimal primary decomposition of the zero submodule of M , which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.

Some defective secant varieties to osculating varieties of Veronese surfaces.

Alessandra Bernardi, Maria Virginia Catalisano (2006)

Collectanea Mathematica

We consider the k-osculating varietiesOk,d to the Veronese d?uple embeddings of P2. By studying the Hilbert function of certain zero-dimensional schemes Y ⊂ P2, we find the dimension of Osk,d, the (s?1)th secant varieties of Ok,d, for 3 ≤ s ≤ 6 and s = 9, and we determine whether those secant varieties are defective or not.

Some results on the cofiniteness of local cohomology modules

Sohrab Sohrabi Laleh, Mir Yousef Sadeghi, Mahdi Hanifi Mostaghim (2012)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring, 𝔞 an ideal of R , M an R -module and t a non-negative integer. In this paper we show that the class of minimax modules includes the class of 𝒜ℱ modules. The main result is that if the R -module Ext R t ( R / 𝔞 , M ) is finite (finitely generated), H 𝔞 i ( M ) is 𝔞 -cofinite for all i < t and H 𝔞 t ( M ) is minimax then H 𝔞 t ( M ) is 𝔞 -cofinite. As a consequence we show that if M and N are finite R -modules and H 𝔞 i ( N ) is minimax for all i < t then the set of associated prime ideals of the generalized local cohomology module...

Some results on the local cohomology of minimax modules

Ahmad Abbasi, Hajar Roshan-Shekalgourabi, Dawood Hassanzadeh-Lelekaami (2014)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring with identity and I an ideal of R . It is shown that, if M is a non-zero minimax R -module such that dim Supp H I i ( M ) 1 for all i , then the R -module H I i ( M ) is I -cominimax for all i . In fact, H I i ( M ) is I -cofinite for all i 1 . Also, we prove that for a weakly Laskerian R -module M , if R is local and t is a non-negative integer such that dim Supp H I i ( M ) 2 for all i < t , then Ext R j ( R / I , H I i ( M ) ) and Hom R ( R / I , H I t ( M ) ) are weakly Laskerian for all i < t and all j 0 . As a consequence, the set of associated primes of H I i ( M ) is finite for all i 0 , whenever dim R / I 2 and...

Some results on top local cohomology modules with respect to a pair of ideals

Saeed Jahandoust, Reza Naghipour (2020)

Mathematica Bohemica

Let I and J be ideals of a Noetherian local ring ( R , 𝔪 ) and let M be a nonzero finitely generated R -module. We study the relation between the vanishing of H I , J dim M ( M ) and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian R -module M / J M is equal to its integral closure relative to the Artinian R -module H I , J dim M ( M ) .

Stable short exact sequences and the maximal exact structure of an additive category

Wolfgang Rump (2015)

Fundamenta Mathematicae

It was recently proved that every additive category has a unique maximal exact structure, while it remained open whether the distinguished short exact sequences of this canonical exact structure coincide with the stable short exact sequences. The question is answered by a counterexample which shows that none of the steps to construct the maximal exact structure can be dropped.

Currently displaying 421 – 440 of 557