Page 1 Next

Displaying 1 – 20 of 25

Showing per page

Parametrization of integral values of polynomials

Giulio Peruginelli (2010)

Actes des rencontres du CIRM

We will recall a recent result about the classification of those polynomial in one variable with rational coefficients whose image over the integer is equal to the image of an integer coefficients polynomial in possibly many variables. These set is polynomially generated over the integers by a family of polynomials whose denominator is 2 and they have a symmetry with respect to a particular axis.We will also give a description of the linear factors of the bivariate separated polynomial f ( X ) - f ( Y ) over a...

Pólya fields and Pólya numbers

Amandine Leriche (2010)

Actes des rencontres du CIRM

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field if the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field K is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of K in a Pólya field. We give a positive answer to this embedding problem by showing that...

Pólya fields, Pólya groups and Pólya extensions: a question of capitulation

Amandine Leriche (2011)

Journal de Théorie des Nombres de Bordeaux

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field when the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. It is known that such fields are characterized by the fact that some characteristic ideals are principal. Analogously to the classical embedding problem in a number field with class number one, when K is not a Pólya field, we are interested in the embedding of K in a Pólya field. We study here two notions which can be considered as measures...

Polynômes de Barsky

Youssef Haouat, Fulvio Grazzini (1979)

Annales scientifiques de l'Université de Clermont. Mathématiques

Polynomial rings over Jacobson-Hilbert rings.

Carl Faith (1989)

Publicacions Matemàtiques

All rings considered are commutative with unit. A ring R is SISI (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective. SISI rings include Noetherian rings, Morita rings and almost maximal valuation rings ([V1]). In [F3] we raised the question of whether a polynomial ring R[x] over a SISI ring R is again SISI. In this paper we show this is not the case.

Polynomials with values which are powers of integers

Rachid Boumahdi, Jesse Larone (2018)

Archivum Mathematicum

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form Q ( m ) , where Q is a polynomial with integral coefficients, then P ( x ) = Q ( R ( x ) ) for some polynomial R . In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m q where q is an integer greater than 1, then P ( x ) = ( R ( x ) ) q for some polynomial R ( x ) .

Pretty cleanness and filter-regular sequences

Somayeh Bandari, Kamran Divaani-Aazar, Ali Soleyman Jahan (2014)

Czechoslovak Mathematical Journal

Let K be a field and S = K [ x 1 , ... , x n ] . Let I be a monomial ideal of S and u 1 , ... , u r be monomials in S . We prove that if u 1 , ... , u r form a filter-regular sequence on S / I , then S / I is pretty clean if and only if S / ( I , u 1 , ... , u r ) is pretty clean. Also, we show that if u 1 , ... , u r form a filter-regular sequence on S / I , then Stanley’s conjecture is true for S / I if and only if it is true for S / ( I , u 1 , ... , u r ) . Finally, we prove that if u 1 , ... , u r is a minimal set of generators for I which form either a d -sequence, proper sequence or strong s -sequence (with respect to the reverse lexicographic...

Currently displaying 1 – 20 of 25

Page 1 Next